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INTRODUCTION

Remote sensing of environment is a rapidly 
developing and valuable branch of modern sci-
ence. Currently, remote sensing is used in the geo-
information systems (GIS) technologies for map-
ping, better management of land, water and other 
natural resources, ecological monitoring, modeling 
and forecasting and, of course, it is also an impor-
tant constituent of modern systems of precise agri-
culture, where remote sensing provides specialists 
with the data that is further used into the decision 
support systems for better management of the ag-
ricultural land [Kustas and Norman, 1996; Herold 
et al., 2002; Rogan and Chen, 2004]. Remote sens-
ing provides great opportunities for fast and pre-
cise evaluation of crops vegetation status in order 
to make the required corrections to agrotechnol-
ogy and reach the maximum productivity of the 
agricultural land [Liaghat and Balasundram, 2010; 
Mulla, 2013]. In order to perform these functions, 

different vegetation indices, which are calculated 
on the basis of the reflectance features of different 
land surfaces, are applied.

One of the most widely implemented vegeta-
tion indices is Normalized Difference Vegetation 
Index (NDVI), which was first mentioned by Rouse 
et al. (1974). This index was the first spatially 
derived one to be successfully applied for distin-
guishing the vegetation cover and its conditions. 
The index values are calculated by the Eq. (1):

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑎𝑎𝑣𝑣𝑛𝑛𝑣𝑣)
(𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑣𝑣𝑛𝑛𝑣𝑣)

 (1)

where: anir is the reflective infrared range of the 
spectrum,

 avis is the visible red range of the spectrum 
[Carlson and Ripley, 1997].

However, the modern implementation of 
NDVI is not just limited to the detection of vege-
tation and description of its conditions. On the on 
the reflectance peculiarities of green leaves, it is 
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ABSTRACT
The results of statistical modelling for the yields prediction of spring row crops, namely, maize, sorghum and soy-
bean, depending on the values of the remotely sensed normalized difference vegetation index (NDVI) at critical 
stages of the crops growth and development were presented. The spatial NDVI data obtained from the Sentinel-2 
satellite were used to create the models. Quadratic regression analysis was applied to develop the yielding models 
based on true yield data of the crops obtained in the period of 2017 and 2018 at the experimental field of the In-
stitute of Irrigated Agriculture of NAAS, Ukraine. The results of statistical modelling revealed that the method is 
suitable for precise yield prediction, and the best stages for NDVI screening and use in this purpose are different 
for the studied crops. The best accuracy of prediction could be obtained at the stage of tasselling (VT) or silking 
(R1) for maize (the mean absolute percentage error MAPE is 8.75%); at the stage of second trifoliate (V2) for soy-
bean (MAPE is 3.75%), and at the stage of half bloom (S6) for sorghum (MAPE is 17.62%). The yield predictions 
by NDVI are reliable at a probability level of 95% (p < 0.05). 
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an indirect index that testifies about the potential 
photosynthetic activity of vegetation, and, as a re-
sult, it can be used to obtain reliable knowledge 
about the potential productivity of agrocenoses. 
The linkage between NDVI and the volumes 
of absorbed photosynthetically active radiation 
(PAR) is direct and almost linear [Gamon et al., 
1995]. Therefore, a strong connection between 
NDVI and PAR enables to find out a link between 
NDVI and yielding capacity, as the latter is di-
rectly dependent on the volumes of PAR, which 
is effectively used by crops [Zhu et al., 2010; 
Raines, 2011].

The goal of our study was to determine the 
connection between the values of remotely sensed 
NDVI and yields of the studied spring row crops 
in order to provide precise early predictions of 
their productivity.

MATERIALS AND METHODS

The definition of the connection between 
NDVI values and yields was performed using 
quadratic regression analysis under the imple-
mentation of Cramer’s rule [Gong et al., 2002]. 
The inputs for the development of equations were 
true values of spring row crops (maize, sorghum 
and soybean) and corresponding values of spa-
tial NDVI obtained from Sentinel-2 and Sen-
tinel-1 combined imaginary at main stages of 
the crop growth, namely: V2 (second trifoliate) 
and R2 (full bloom) for soybean [McWilliams 
et al., 1999]; S3 (growing point differentiation) 
and S6 (half bloom) for sorghum [Roozeboom 
and Prasad, 2019]; VT (tasselling) and R1 (silk-
ing) for maize [Nafziger, 2013]. The true yields 
of the studied crops were obtained through the 
entire combine harvesting of the plots located at 
the experimental field of the Institute of Irrigated 
Agriculture of NAAS (within the square built by 
the key points with coordinates: 46°44’36.5”N 
32°42’07.0”E; 46°44’39.5”N 32°42’32.0”E; 
46°44’33.3”N 32°42’33.7”E; 46°44’30.3”N 
32°42’08.5”E) in 2017–2018. The yields were 
calculated at the standard moisture content in 
grain (14% for maize, 13.5% for sorghum and 
12% for soybean). The coefficient of yields varia-
tion (CV) was calculated as a ratio of standard 
deviation (SD) to mean value [Everitt and Skro-
ndal, 2010]. The yields were linked to the corre-
sponding values of NDVI and the data were pro-
cessed using Microsoft Excel 365 software at the 

probability level of 95% (p < 0.05) with further 
approximation and calculation of mean absolute 
percentage errors (MAPE) for yield predictions 
[De Myttenaere et al., 2016]. 

RESULTS AND DISCUSSION

While analyzing the NDVI values at two 
stages of grain corn development a remarkable 
feature was observed: the values of index at both 
stages of the crop growth (VT and R1) were simi-
lar, resulting in a comparable level of yield fore-
casting accuracy (Table 1).

The regression analysis allowed determining 
the strength of the connection between the NDVI 
values and maize yields by the rule of thumb, 
which is very high and positive with a coefficient 
of correlation R = 0.9906, and coefficient of de-
termination R2 = 0.9813 [Mukaka, 2012]. Qua-
dratic Eq. (2) describing the linkage between the 
spatial index values and yields of the crop is:

𝑦𝑦 = 8.571 × 𝑥𝑥2 + 22.755 × 𝑥𝑥 − 8.035 (2)
where: y is the yield of maize in t ha-1, and x is 

the value of NDVI at VT or R1 stage. 
Approximation of the regression model 
and calculation of MAPE that is less than 
10%, proved the high accuracy and reli-
ability of the forecasting grain corn yield 
by the NDVI values [Moreno et al., 2013].

As for other studied crops, the NDVI val-
ues corresponding to the different stages of their 
growth differed, providing unequal accuracy of 
yield predictions. Thus, the least accuracy of qua-
dratic regression model for yield forecasting was 
for sorghum (Table 2).

The greatest discrepancy between the pre-
dicted and true yields was observed at the S3 
stage – 22.01% on average. This makes the yield-
ing model for this stage just a reasonable forecast-
ing, which should not be implemented as a guid-
ance and cannot be used in precision agriculture 
[Moreno et al., 2013]. Quadratic regression Eq. 
for S3 stage looks like (3):

𝑦𝑦 = 42.311 × 𝑥𝑥2 − 30.065 × 𝑥𝑥 + 7.833 (3)

where: y is the yield of sorghum in t ha-1, and x is 
the value of NDVI at S3 stage. The coef-
ficient of correlation R for this model is 
0.8809, R2 is 0.7760, which still is a high 
positive correlation according to the rule 
of thumb [Mukaka, 2012].
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The sorghum yield prediction using NDVI 
at S6 stage has higher accuracy with an aver-
age MAPE of 17.62% that is a good forecasting 
[Moreno et al., 2013]. Quadratic regression Eq. of 
the model is (4):

𝑦𝑦 = 52.193 × 𝑥𝑥2 − 42.126 × 𝑥𝑥 + 10.014 (4)
where: y is the yield of sorghum in t ha-1, and x is the 

value of NDVI at S6 stage. The coefficient 
of correlation for the model R is 0.9298, 
and R2 is 0.8645, respectively, testifying 
about a high positive correlation accord-
ing to the rule of thumb [Mukaka, 2012].

The regression analysis of the relationship be-
tween NDVI and soybean yields showed the high-
est level of correspondence between these parame-
ters at the V2 stage of the crop, when MAPE of the 
quadratic model averaged to 3.75% which testifies 

about the very high accuracy of yield forecast ac-
cording to Moreno et al. (2013) (Table 3).

The forecasting model could be expressed as 
Eq. (5):

𝑦𝑦 = −0.221 × 𝑥𝑥2 + 9.220 × 𝑥𝑥 − 2.338 (5)
where: y is the yield of soybean in t ha-1, and x 

is the value of NDVI at V2 stage. Coef-
ficient of correlation R for this model is 
0.9914, R2 is 0.9829, which is a very high 
positive correlation according to the rule 
of thumb [Mukaka, 2012].

The quadratic regression model for soybean 
yields at R2 stage is less accurate with MAPE av-
eraged to 10.16%, however, this value also certi-
fies about the possibility of precise productivity 
prediction for the crop [Moreno et al., 2013]. The 
model could be described by the Eq. (6):

Table 1. True and predicted by the NDVI-based model yields of maize

Year True yield (t ha-1) NDVI at VT (R1) Predicted yield (t ha-1) MAPE at VT (R1) (%)
2017 2.87 0.40 2.44 15.04
2017 3.82 0.43 3.33 12.71
2017 3.92 0.43 3.33 14.94
2017 4.21 0.44 3.64 13.62
2017 4.43 0.45 3.94 11.05
2017 7.77 0.55 7.07 8.97
2017 9.72 0.61 9.03 7.05
2017 10.52 0.63 9.70 7.77
2017 10.78 0.64 10.04 6.87
2017 11.35 0.66 10.72 5.58
2017 11.97 0.68 11.40 4.75
2017 13.57 0.73 13.14 3.14
2017 13.87 0.74 13.50 2.69
2017 14.09 0.75 13.85 1.69
2017 14.51 0.76 14.21 2.07
2018 3.06 0.45 3.94 28.77
2018 3.46 0.46 4.25 22.71
2018 3.57 0.46 4.25 18.93
2018 3.89 0.47 4.55 17.05
2018 4.17 0.48 4.86 16.60
2018 8.25 0.60 8.70 5.50
2018 10.11 0.66 10.72 6.00
2018 10.39 0.67 11.06 6.43
2018 10.81 0.68 11.40 5.47
2018 10.82 0.68 11.40 5.38
2018 11.09 0.69 11.75 5.92
2018 13.75 0.75 13.85 0.75
2018 14.09 0.76 14.21 0.85
2018 14.32 0.77 14.57 1.73
2018 14.59 0.78 14.93 2.32
Mean 9.13 0.61 9.13 8.75

CV 0.47 0.21
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𝑦𝑦 = −0.221 × 𝑥𝑥2 + 9.220 × 𝑥𝑥 − 2.338 (6)

where: y is the yield of soybean in t ha-1, and x 
is the value of NDVI at R2 stage. Coef-
ficient of correlation R for this model is 
0.9377, R2 is 0.8793, which is a very high 
positive correlation according to the rule 
of thumb [Mukaka, 2012].

Our results testify that it is possible to pre-
dict the crop yields by the NDVI values with a 
relatively high accuracy, which exceeds 90% for 
grain corn and soybean, and is just above 80% for 
sorghum. Lower accuracy of the sorghum yield 
forecasting was attributed to the higher variation 
of the input NDVI data used in our study: CV for 
S3 stage was the highest among the studied crops 
and reached 0.23, while the tendency towards an 

increase of the forecasting model performance 
under lower NDVI fluctuations was observed (the 
closest prediction was obtained at the lowest CV 
of NDVI – 0.16 at V2 stage of soybean).

Another study on the soybean yield predic-
tion by the NDVI values also claimed that there 
is a strong non-linear dependence of the crop pro-
ductivity on NDVI that is proven by the value of 
adjusted R2 reaching 0.721 under the implementa-
tion of flexible Fourier transform modelling meth-
od [Xu and Katchova, 2019]. The results obtained 
by Bolton and Friedl (2013), where the accuracy 
of soybean yield forecasting using MODIS NDVI 
data were very close to the above-mentioned soy-
bean yield prediction, being slightly lesser than 
in our study (R2 reached 0.69). Another recent 
study also found out that the NDVI values have 
a positive correlation with maize and soybean 

Table 2. True and predicted by the NDVI-based model yields of sorghum

Year True yield 
(t ha-1)

NDVI 
at S3

Predicted yield 
(t ha-1)

MAPE 
at S3 (%)

NDVI 
at S6

Predicted yield 
(t ha-1)

MAPE 
at S6 (%)

2017 1.98 0.55 4.04 103.88 0.60 3.53 78.16
2017 2.43 0.56 4.20 72.99 0.61 3.74 53.82
2017 2.46 0.56 4.20 70.88 0.61 3.74 51.95
2017 2.98 0.57 4.38 46.94 0.62 3.96 32.84
2017 3.19 0.58 4.56 43.02 0.63 4.19 31.34
2017 4.36 0.61 5.16 18.44 0.66 4.95 13.44
2017 4.59 0.62 5.38 17.24 0.67 5.22 13.70
2017 6.27 0.67 6.59 5.17 0.72 6.74 7.49
2017 6.39 0.67 6.59 3.20 0.72 6.74 5.48
2017 6.80 0.68 6.86 0.92 0.73 7.08 4.05
2017 7.00 0.69 7.14 1.98 0.74 7.42 6.02
2017 7.02 0.69 7.14 1.69 0.74 7.42 5.72
2017 7.15 0.69 7.14 0.16 0.74 7.42 3.80
2017 8.36 0.73 8.33 0.38 0.78 8.91 6.58
2017 8.58 0.75 8.97 4.58 0.80 9.72 13.25
2018 2.08 0.30 2.60 25.19 0.50 2.00 3.90
2018 2.28 0.31 2.56 12.29 0.51 2.10 7.68
2018 2.35 0.31 2.56 8.94 0.51 2.10 10.43
2018 2.76 0.34 2.48 10.17 0.53 2.35 14.93
2018 3.26 0.37 2.47 24.10 0.55 2.63 19.24
2018 4.92 0.48 3.10 36.89 0.61 3.74 24.03
2018 5.08 0.49 3.21 36.76 0.62 3.96 22.07
2018 6.81 0.61 5.16 24.17 0.69 5.80 14.89
2018 6.89 0.61 5.16 25.05 0.69 5.80 15.88
2018 7.11 0.63 5.61 21.14 0.70 6.10 14.20
2018 7.32 0.65 6.08 16.89 0.71 6.41 12.37
2018 7.51 0.67 6.59 12.19 0.72 6.74 10.25
2018 7.65 0.68 6.86 10.30 0.72 6.74 11.90
2018 8.54 0.74 8.65 1.25 0.75 7.78 8.92
2018 8.67 0.75 8.97 3.50 0.75 7.78 10.29
Mean 5.43 0.59 5.43 22.01 0.66 5.43 17.62

CV 0.43 0.23 0.13
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yields and might be implemented as inputs for the 
yield prediction [Johnson, 2014]. The NDVI data 
has also been proven to be efficiently used for 
large-scale grain corn yield prediction using the 
regression models based on long-term datasets: 
the method provided reliable results 6–8 weeks 
in advance from the harvesting period [Nagy et 
al., 2018]. The regression analysis of corn yield 
linked to the NDVI time series values revealed 
a strong dependence of the crop on the NDVI 
at the pre-silking period, enabling to predict the 
possible yield losses due to unfavourable condi-
tions in this period [Wang et al., 2016]. There is 
a study reporting about a very high accuracy of 
an empirical pair model “maize yield – NDVI at 

flowering stage” that provided just 3% discrepan-
cy from the true yields [Fernandez-Ordoñez and 
Soria-Ruiz, 2017]. The study devoted to the de-
termination of the maize yields depending on the 
NDVI sensed by unmanned aerial vehicles at dif-
ferent stages of the crop growth showed that the 
best yield prediction performance was obtained 
under the implementation of the R2 stage NDVI 
values as inputs [Maresma et al., 2020], while 
our study showed that the model performance is 
good at R1 stage. Some scientists also reported a 
strong dependence of the ‘NDVI – maize yield” 
prediction model on the plant density of the crop 
[de Olivera et al., 2019], while this factor was 
not taken into account in our research. As for 

Table 3. True and predicted by the NDVI-based model yields of soybean

Year True yield (t 
ha-1)

NDVI 
at V2

Predicted yield 
(t ha-1)

MAPE 
at V2 (%)

NDVI 
at R2

Predicted yield 
(t ha-1)

MAPE 
at R2 (%)

2017 1.58 0.45 1.77 11.79 0.35 1.44 9.08
2017 2.17 0.51 2.31 6.30 0.43 1.97 9.01
2017 2.51 0.55 2.67 6.22 0.48 2.31 8.11
2017 2.54 0.55 2.67 4.97 0.48 2.31 9.20
2017 2.62 0.56 2.76 5.19 0.49 2.37 9.45
2017 2.76 0.57 2.85 3.10 0.51 2.50 9.28
2017 2.82 0.58 2.94 4.09 0.52 2.57 8.88
2017 3.39 0.64 3.47 2.43 0.60 3.09 8.87
2017 3.56 0.66 3.65 2.55 0.62 3.22 9.61
2017 3.62 0.67 3.74 3.32 0.64 3.35 7.57
2017 3.81 0.69 3.92 2.85 0.67 3.54 7.17
2017 4.06 0.72 4.19 3.10 0.70 3.73 8.21
2017 4.28 0.74 4.36 1.96 0.73 3.92 8.52
2017 4.31 0.74 4.36 1.25 0.73 3.92 9.16
2017 4.49 0.75 4.45 0.83 0.75 4.04 10.02
2018 1.37 0.4 1.31 4.04 0.40 1.77 29.47
2018 2.11 0.48 2.04 3.47 0.51 2.50 18.67
2018 2.21 0.49 2.13 3.77 0.52 2.57 16.27
2018 2.32 0.5 2.22 4.45 0.54 2.70 16.39
2018 2.48 0.52 2.40 3.36 0.56 2.83 14.13
2018 2.57 0.53 2.49 3.25 0.57 2.90 12.66
2018 2.68 0.54 2.58 3.87 0.59 3.02 12.86
2018 3.25 0.6 3.11 4.17 0.67 3.54 8.83
2018 3.38 0.61 3.20 5.21 0.69 3.66 8.39
2018 3.71 0.65 3.56 4.00 0.74 3.98 7.22
2018 3.79 0.66 3.65 3.67 0.75 4.04 6.60
2018 3.86 0.67 3.74 3.10 0.76 4.10 6.29
2018 3.96 0.68 3.83 3.30 0.78 4.23 6.74
2018 4.30 0.72 4.19 2.66 0.83 4.54 5.47
2018 4.47 0.75 4.45 0.39 0.80 4.35 2.67
Mean 3.17 0.61 3.17 3.75 0.66 3.17 10.16

CV 0.28 0.16 0.21



181

Journal of Ecological Engineering  Vol. 21(6), 2020

sorghum, there are a few findings related to the 
NDVI-based grain yield prediction. There is a re-
port stated about high accuracy (MAPE < 0.2) of 
the sorghum biomass prediction using NDVI data 
up to 6 months in advance [Zinke-Wehlmann et 
al., 2019]. A comprehensive large-scale study con-
ducted in the US with various crops, including sor-
ghum, maize, soybean, on the relationship between 
the crop yields and MODIS NDVI showed a posi-
tive correlation between these figures for all the 
mentioned crops considering the possibility of the 
use of spatial vegetation indices in the yield predic-
tion [Johnson, 2016]. Another large study devoted 
to the derivation of maize, soybean and sorghum 
yielding potential through the multivariate regres-
sion analysing the sets of satellite imaginary and 
calculated vegetation indices testified about a rea-
sonable correlation between the vegetation indices 
and yields (the coefficient R values were 0.86, 0.74 
and 0.65 for maize, soybean and sorghum, respec-
tively) [Petersen, 2018]. These results agree with 
ours in that the least inter-connection with R2 of 
0.42 was observed for sorghum, as in our study.

Besides the individual NDVI-yield models, 
other scientists provided combined models with 
other indices related to the crop productivity, name-
ly, PAR, leaf area index (LAI), enhanced vegetation 
index (EVI), etc. [Báez-González et al., 2002; Fang 
and Hoogenboom, 2011; Lykhovyd, 2020]. We 
consider this approach reasonable in some cases, in 
particular, when it is difficult to obtain highly reli-
able prediction using single vegetation index as for 
sorghum in our study, because the introduction of 
additional crop indices may significantly improve 
the modelling performance. Besides, implementa-
tion of modern better computation techniques can 
also be useful for the enhancement of the yielding 
prediction models [Stas et al., 2016; Tiwari and 
Shukla, 2020]. However, complicated computa-
tions through artificial neural networks (ANN) 
sometimes do not show performance, which is 
much better than of regression analysis: the ANN 
NDVI-based model of sugarcane yield prediction 
had R2 of 0.61 that cannot be considered as a highly 
reliable forecast [Fernandes et al., 2017]. 

CONCLUSIONS

The statistical analysis of the yields of three 
spring row crops, namely, grain corn, sorghum 
and soybean, in the connection to the NDVI val-
ues obtained from the Sentinel-2 remote sensing 

imaginary at critical stages of the studied crops 
growth proved a high positive correlation between 
the spatial vegetation index and their productivity. 
By means of the quadratic regression analysis per-
formed under the implementation of Cramer’s rule, 
it was determined that the NDVI-based models for 
early yield prediction are suitable for precise yield 
forecasting at the probability level of 95% (p < 
0.05). The values of MAPE for the best prediction 
models are: 8.75% for grain corn, 17.62% for sor-
ghum, 3.75% for soybean, respectively. Therefore, 
NDVI should be used as a tool for early yield fore-
casting both for the scientific and practical needs.

Considering the results of our study and 
the above-mentioned reports of other scientific 
groups, it was concluded that notwithstanding 
the fact of a huge number of studies devoted to 
the yield simulation by spatial vegetation indices, 
greater knowledge on the technique of their appli-
cation in precision agriculture is required to pro-
vide the scientifically substantiated recommenda-
tions for practitioners. 
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